如何解二元一次方程组代入法(如何解二元一次方程)
大家好,今天小六子来为大家解答以下的问题,关于如何解二元一次方程组代入法,如何解二元一次方程这个很多人还不知道,现在让我们一起来看看吧!
1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
2、 消元的方法有两种: 代入消元法 例:解方程组 : x+y=5① 6x+13y=89② 解:由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7代入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
3、 加减消元法 例:解方程组: x+y=9① x-y=5② 解:①+② 2x=14 即 x=7 把x=7代入①,得 7+y=9 解,得:y=2 ∴ x=7 y=2 为方程组的解 像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
4、 二元一次方程组的解有三种情况: 1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
5、 3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。
本文分享完毕,希望对你有所帮助。